
A Framework for Interactive Texturing on Curved Surfaces
Hans Køhling Pedersen

Computer Science Department
Stanford University�
Abstract

Existing techniques for texturing curved surfaces are either only
applicable for a limited subsetof surface representations (3d paint-
ing of parametric patches or dense polygonal meshes for exam-
ple), or do not lend themselvesnaturally to interactive texture edit-
ing (e.g. procedural and solid textures). Although such methods
have been used to produce stunning effects, there is a lack of flex-
ible and general purpose tools, such as those provided by 2d im-
age processing applications. This work argues that interactive tex-
turing could benefit from a more cohesive paradigm built around
a kernel of powerful and general operations. Using an analogy
to the evolution of 2d painting algorithms, the paper motivates a
framework for interactive texturing operations on curved surfaces
and describes an approach for translating, rotating, and warping
regions of texture (patchinos) on a surface. These ideas have been
implemented for parametric and implicit surfaces. As an interest-
ing side effect, this more unified framework also opens the door to
a number of new interactive 3d texturing techniques that have no
natural counterparts in two dimensions.

1 Introduction
In the past decade, 2d painting systems have revolutionized the
field of desktop publishing. The success of these products has
stimulated an intense research interest in interactive image pro-
cessing tools and a diverse range of applications based on highly
specialized operations has been absorbed into this thriving market,
such as “Adobe PhotoShop”, “Fractal Design Painter” and “Kai’s
Power Tools”. However, underneath this diversity is an under-
lying framework consisting of a few general and powerful algo-
rithms, most prominently the concepts of digital compositing [1]
and copy and paste [2].

The idea behind compositing is to reduce the complexity of ren-
dering by separating the image into a numberof layers, generate an
image for each layer, and subsequently synthesize the layers into
one composite image using mattes and alpha blending [3]. Copy
and paste operations allow portions of an image to be extracted,
moved, warped and repositioned interactively. The two ideas sup-
plement each other well as they share the underlying philosophy
of looking at an image as a combination of layers that can be com-
bined using high level operators. The two methods will henceforth
be referred to under the common term of image compositing.

� I can be reached at Laboratory for Computer Science, Mas-
sachusetts Institute of Technology.
Today, image compositing forms the foundation for all com-
mercial painting packages, a success which can be attributed to
a convenient and intuitive user interface, simplicity and elegance
of the underlying theoretical model, and computational efficiency
that makes the idea practical.

1.1 Interactive 3d texturing
Compared to traditional framebuffer systems, which date back to
the early 1970s [4], 3d painting is a new discipline [5]. Recently,
however, the market for these products has experienced an explo-
sive growth that rivals that of 2d systems a decade ago. Unfortu-
nately, the literature on 3d painting algorithms exhibits a tendency
to focus on one particular type of surface representation, such as
parametric patches [5], scanned polygonal meshes [6], parameter-
ized meshes [7], or implicit surfaces [8], thus polarizing the spec-
trum of painting algorithms rather than moving towards a unify-
ing standard. Although the fundamental differences between the
underlying surface representations make certain operations bet-
ter suited for one particular class of surfaces than another (cubic
patches, for example, are ideal for patterns utilizing trim curves,
while polygonal meshes often provide a more compact represen-
tation for low frequency textures), it would be desirable to iden-
tify a nucleus of operations, a lowest common denominator, that
could serve as a general framework for all painting systems. In
order to design such an architecture, we need to identify a suit-
able core of generic operations. Fleisher et al. [9] introduced a
novel framework for cellular texturing compatible with all stan-
dard surface representations. However, since our focus is on more
general operations supported by an intuitive interface, the proven
concept of image compositing forms an even better source of in-
spiration. Furthermore, Daily and Kiss’s [10] recent study of users
of painting systems concluded that artists are more likely to em-
brace a 3d application if its interface resembles that of the well
known 2d packages. Motivated by these observations, this paper
proposes a framework for interactive texturing of general smooth
surfaces that extends the power of the interactive image composit-
ing paradigm to three dimensions.

1.2 Overview
Section 2 presents an architecture for texturing operations on
smooth surfaces, followed by a generalization of the basic con-
cepts of image compositing to surfaces in section 3. Section 4 dis-
cussesmore advancedhigh level operations, followed by a conclu-
sion and ideas for future work.

2 Architecture
Before moving on to texture compositing on surfaces, we will start
by developing an architecture that will allow such operations to
be applied on general smooth models. Pedersen [8] took a step
towards this goal with an approach for placing images arbitrarily

Copyright Notice
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.



on implicit surfaces in lieu of extending the method to other types
of surfaces. In this section, a more elaborate architecture will be
presented.

2.1 Surfaces
For some operations, such as dragging curves smoothly across a
surface, it is most convenient to work with a representation that
offers continuous derivatives, but for others a polyhedral approx-
imation is more practical (estimating coordinate transformations
between a surface and a patch on it, for example). To get the best
of both worlds, surfaces are represented by a differentiable func-
tion as well as a parameterized polygonal mesh. For our study, we
will assume that both representations are readily available. This
assumption is reasonablebecause such techniques exist for widely
used surface representations, such as spline patches (the trivial
case), implicit surfaces [8], polyhedral surfaces [7, 11] and dense
uniform point clouds [12].

Class Vector2 Real u,v
Class Vector3 Real x,y,z

Class Surface
private:

DifferentiableSurface smooth
; Differentiable function

Mesh mesh ; Parameterized polygonal mesh
public:

ComputeNormal(Sample p) 7! Vector3
Slide(Sample p,Vector3 v)
ComputeCurve(Sample p1,Sample p2) 7! Curve
GetTextureCoordinates(Sample p) 7! (u,v,patch id)

Class DifferentiableSurface
virtual Vector3 ComputeNormal(Sample p)
virtual Slide(Sample p,Vector3 v)

Class Parametric : public DifferentiableSurface
private:

Patch patches[MAX SIZE]
; Parameterizations for individual patches

public:
ComputeNormal(Sample p) 7! Vector3
Slide(Sample p,Vector3 v)

Class Implicit : public DifferentiableSurface
private:

Gradient(Vector3 x) 7! Vector3
AttractPoint(Vector3 x) 7! Vector3

; Prevents points from drifting away.
; See [13] for details.

public:
ComputeNormal(Sample p) 7! Vector3
Slide(Sample p,Vector3 v)

Figure 1: Representation of surfaces. See section 2.1 for
further comments.

More specifically, surfaces are represented by the data struc-
ture shown in figure 1. Slide moves a sample point p with velocity
v constrained to the surface1, Surface : ComputeCurve computes
a curve between two arbitrary points on the surface, and GetTex-
tureCoordinatesdetermines the surface texture coordinates corre-
sponding to a point on the surface. Internally, ComputeNormal
and Move are implemented using only the differentiable function,
while the two latter procedures utilize both the smooth and polyg-
onal representations.

Any high level texturing algorithm that can be implemented in
terms of these primitives can be applied for any class for surfaces
for which the above library is available.

2.2 Differentiable surfaces
Class DifferentiableSurface is used for operations that require a
continuous derivative. In principle, it could have any number
of sub-classes corresponding to subsets of surfaces with different
mathematical representations, but we will focus on the important
cases of implicit and parametric surfaces. Because different types
of surfaces possess inherently different internal representations,
surface samples are also represented as derived classes. The cor-
responding data structures are shown in figure 2.

Class Sample
Vector3 x ; Position

Class ParametricSample : public Sample
Real u,v ; (u,v) coordinates
Integer patch id ; Index of surface patch

Implicit: ComputeNormal(Sample p) 7! Vector3
g = Gradient(p:x)

return g

jgj

Implicit: Slide(Sample p,Vector3 v)
vproj = p:ProjectToTangentPlane(v)
p:x = p:x+ vproj
p:x = AttractPoint(p:x)

Parametric: ComputeNormal(Sample p) 7! Vector3
�u = patches[p.patch id].U Derivative(p:u; p:v)
�v = patches[p.patch id].V Derivative(p:u; p:v)
return �u��v

j�u��vj

Parametric: Slide(Sample p,Vector3 v)
v proj = p:ProjectToTangentPlane(v)
hh Update (p:u,p:v,p.patch id) by v proj ii

; See section 2.2 for detailed comments

Figure 2: Implementation of smooth surfaces.

In Parametric:Slide, the velocity vector v is projected to the
tangent plane and the partial derivatives are used to estimate a uv-
offset, which is added to (p:u,p:v). Care must be taken when a
sample moves across a patch boundary: first, the point is moved

1For simplicity, it is assumed that jvj is small enough for the differen-
tiable surface to be approximated by its tangent plane within this distance.
Larger velocity vectors should be subdivided into a number of smaller
steps.



to the boundary of the patch, then (p:u,p:v,p:patch id) is set to
the corresponding triple in the adjacent patch’s coordinates and,
finally, a recursive call to Slide completes the operation.

Notice that although procedures like ComputeNormaland Slide
may be implemented very differently for parametric and implicit
surfaces, we do not have to worry about such low level details
when we move on to design higher level operations. Thus, from
now on we will no longer distinguish between different types of
surfaces but formulate all algorithms in terms of the methods of
the Surface superclass.

3 Texture compositing
Whereas digital images can be represented by a simple uniform
grid of samples, the corresponding problem of sampling a texture
on a 3d surface currently has no equally convenient solution. We
choose to sample the texture signal in texture maps correspond-
ing to parameterized polygonal patches (see [8] for a motivation
of this representation).

Similar to image compositing, our approach consists of three
simple steps:

1. Copy a region of texture.

2. Move it.

3. Paste it back.

This section will describe how each step can be generalized to
surfaces.

3.1 Copying and pasting
2d painting systems offer a variety of interactive and automatic
tools for outlining regions of an image. After a region has been
selected, a rectangular bounding region is copied along with an
alpha channel specifying the opaqueness of each pixel. Whereas
computing bounding boxes and copying pixels is uncomplicated
for images, the corresponding problems for curved surfaces are a
little less straightforward.

In our system, the region to be extracted is outlined by one
or more closed polygonal curves on the surface using the Com-
puteCurve operation. Ideally, it would be convenient to compute
a bounding box for the region automatically, but we leave this
problem to future work and currently draw a rectangular bound-
ing patch interactively. From now on, such a patch will be re-
ferred to as a patchino to distinguish it from the patches that con-
stitute the polygonal mesh. After the patchino has been parame-
terized (see section 4 of [8] for details), the closed curves are pro-
jected to it ([8], section 5.1) and a matte is computed by perform-
ing an inside-outside test for each texel (in practice, we tessellate
the closed regions and scan-convert the resulting triangles directly
into the alpha channel). Finally, a coordinate transformation be-
tween the surface patches and the patchino is computed and used
to copy the texels from the surface into the texture space of the lat-
ter. In section 5.2.1 of [8], an algorithm for pasting textures from
a patchino to a surface was outlined (see also figure 9a), and the
corresponding cut operation can be implemented similarly using
the GetTextureCoordinates primitive (figure 9b). Although these
algorithms are somewhat more time consuming to implement for
surface textures than for images, the procedures are completely
analogous and the simple and intuitive user interface is preserved.

3.2 Moving textures - overview
In two dimensions, regions of an image can be translated, rotated
and scaled using simple affine transformations. Unfortunately, the
attractive simplicity of planar geometry does not generalize di-
rectly to curved surfaces. In differential geometry, the literature on
curves and surfaces in surfaces present various approaches to the
problem of describing regions of curved surfaces independently
of the surface representation. In some cases, such as cubic spline
patches on low degree implicit surfaces [14], it is possible to de-
rive expressions for regions of a surface analytically, but, unfortu-
nately, the range of mathematical tools for analyzing this problem
is limited, and existing results are too special case to be practical
for our problem: to slide patches freely across general surfaces re-
liably and at interactive speed.

Due to these shortcomings of existing analytical tools, we
choose to make some simplifying assumptions:

1. A patchino is approximated by a mesh of coupled springs
connecting a grid of sample points.

2. As the patchino moves across the surface, only the sample
points are constrained to remain on the surface.

Given these assumptions, moving a patchino can be formulated
as a constrained optimization problem, namely that of minimizing
metric distortion relative to some rest shape subject to the con-
straint that all samples in the grid must remain on the surface. Al-
though parts of the patchino thus may not lie exactly on the sur-
face, the accuracy with which it approximates the surface geome-
try can be chosen arbitrarily by increasing or decreasing the den-
sity of the samples in the mesh. Since most smooth surfaces are
eventually rendered as a set of polygons instead of a differentiable
function, it is not unreasonable to use a polygonal approximation
to the patches in the texturing stage as well. We will return with a
further discussion of the implications of these assumptions in sec-
tion 6.

3.3 Moving textures - theory
Let � : U 7! S be a parameterization of a regular patch, R, on
smooth surface, S, that has a normal vector field with continuous
derivative (notice that S is not required to have a parameteriza-
tion).

Finding a reparameterization such that the metric distortion

E(U) =

Z Z
U

Error(�u; �v)dudv

is minimal, where �u and �v denote the partial derivatives and
Error is some objective function measuring the distortion within
the patch, is a standard problem in graphics research [15, 7,
16, 11]. Various functionals have been proposed, weighting the
preservation of angles and distances in different ways. The Green-
Lagrange deformation tensor is a simple example:

EGL(U) =

Z Z
U

jjG�(u; v)� Ijj
2
dudv

=

Z Z
U

(�u
2
� 1)

2
+ 2(�u�v)

2
+ (�v

2
� 1)

2
dudv

where G� denotes the metric tensor of �.
Our problem, however, is slightly different: instead of mini-

mizing distortion relative to a plane, it is minimized relative to a
curved rest shape parameterization �:

E(U) =

Z Z
U

jjG�(u; v)�G�(u; v)jj
2
dudv

=

Z Z
U

(�u
2
��u

2
)
2
+2(�u�v��u�v)

2
+(�v

2
��v

2
)
2
dudv;



subject to the constraint that �(U) � S. Just like EGL penalizes
the deviation between the metric tensor to � and the identity ma-
trix, E measures the difference between the metric tensor of � and
that of �. Naturally, there is a tradeoff between minimizing metric
distortion and the “stick-to-surface” constraint, and, aside from a
few simple surfaces, it is impossible to avoid some degree of dis-
tortion.

Although conceptually simple, the problem of implementing
these ideas feasibly in an interactive system is challenging. To
make the approach practical, we will have to replace E with a
slightly different functional.

3.3.1 Discretization

Given a patch on a surface, its parameterization, �, is said to be the
rest shape of any other patch (with parameterization �) for which
E(U) = 0. As patchinos are stored as a discrete grid of samples
rather than a continuous function, the rest shape is represented as
a list of spring coordinates, (ku; kv), for each node, pi, in the grid:

qij :xproj = pi:x+ k
ij
u pi:�u + k

ij
v pi:�v

where qij :xproj denotes the projection of pi’s j’th neighbor onto
the tangent plane at pi:x (see also Sample in figure 7), and
(kiju ; kijv ) are the rest coordinates of spring j emanating from node
i. Each (ku; kv) pair thus represents the coordinates of an adjacent
node in the tangent plane through p:x and spanned by the basis
p:�u; p:�v (see figure 3).

θ

θ

kv

u

ij

ij

ij

p

q

i u

v

k

Figure 3: The local coordinates of the rest lengths of the
springs are measured in the (�u; �v) coordinate frame at p.

The reason for measuring the rest lengths of the springs in lo-
cal coordinates rather than in absolute distances is that the partial
derivatives inevitably will change as the patchino moves across
the surface, and fighting this distortion by trying to keep the metric
tensors identical everywhere (see E above) is a losing battle that
will quickly result in the patchino folding onto itself. Our solution
to the tradeoff between minimizing E and preserving the structural
integrity of the grid is to assign a priority to each sample point, in-
dicating the relative importance of minimizing distortion in this
particular region. Since the base surface was assumed to be rel-
atively smooth, it is reasonable to allow a greater amount of dis-
tortion near the edges of a patchino than at its center, and this can
be accomplished using local coordinates as described above and
controlling the order in which the nodes are updated in each itera-
tion. More specifically, the algorithm, which will be described in
detail in section 3.4, proceeds in a spiral pattern emanating from
the center as shown in figure 4.

The discretization of the modified E is

E�(U) =
X
i

X
j

(k
ij
u�
� k

ij
u�
)
2
+ (k

ij
v�
� k

ij
v�
)
2

1112

102

91

8

3

p

7

4

5

6

Figure 4: The order in which the nodes are visited forms a
spiral emanating from the center node.

where the greek subscript denotes the parameterization for which
the derivatives define the basis vectors where the spring coordi-
nates are measured. In essence, the procedure adapts the stiffness
of the springs to the geometry of the surface, but still preserves
the shape of the patch in the sense that no matter how far it moves
from the location where its rest shape was specified, it will reattain
its original shape when it returns.

To summarize, the algorithm works by first estimating the par-
tial derivatives at each sample point using finite differences, then
minimizing E� by updating the positions of the samples in a spe-
cific order subject to the constraint that all the samples must re-
main on the surface. These two steps are repeated continously,
only interrupted by external forces exerted on a patchino by user
interaction. We will return with more details on the implementa-
tion in a moment.

3.3.2 Moving patchinos

Motion can be integrated into the optimization procedure by re-
peating two steps. First, each sample point pi:x is moved with a
velocity vectorpi:v, perturbing E� slightly from a local minimum,
and the objective function is then pulled back towards a minimum
as described in the previous section.

As with any optimization technique, the robustness depends on
the step size, and the trick is to pick the sample velocities so that
the updated positions will remain in the proximity of a local min-
imum for E� .

3.4 Moving textures - implementation
Figure 7 outlines an implementation of the most basic operations
needed for interacting with patchinos. In the following, each step
will be described in more detail.

3.4.1 Freezing the rest shape

Before a patchino can be moved, its rest shape must be initialized
to the parameterization of a patchino. The algorithm for freezing
the current shape of a patch to its rest shape is sketchedas Patchino
: Freeze in figure 7. Given the resulting data structure and the par-
tial derivatives at each node, the mesh can be optimized towards
the rest shape as shown in procedure Pathino : ReduceDistortion.

3.4.2 Translation

In our interface, the user selects a patch by clicking on a control
point. As the projection of this point is dragged in screen space,
the patch moves constrained to the surface so that the control point
on the patch follows the cursor. Per default, the control point is
taken to be the center vertex, but it could be any fixed point on
the patch. Thus, the input to the translation algorithm is simply a
three-dimensional vector.



v

p

p'

Figure 5: Propagating transformation velocities through a
patch. When a transformation is applied to the center point
in the grid, similar transformations are applied to its neigh-
bors.

If this velocity vector only was applied to the center node, it
might take many iterations for the operation to propagate to the
entire patchino grid, and this lag makes the idea infeasible in an
interactive system. A naive alternative would be to add the same
velocity vector to every node, but this idea fails because it violates
the stick-to-surface constraint in regions of high curvature. In-
stead, the velocity vector estimates are propagated outwards from
the control point in a spiral order (see figure 4): First, the location
of the control sample, p:x, is moved with velocity v constrained
to the surface using Surface : Slide, and the tangent plane com-
ponent of the difference between the new and the old position is
stored in p:v. Second, for each immediate neighbor, q, to the con-
trol point, p:v is projected to the tangent plane at q:x and restored
to its original length, and the resulting velocity vector is used to
update q:x constrained to the surface. Finally, the velocity vector
q:v is computed as described for p:v. This spiral continues until
every vertex has been visited.

3.4.3 Rotation

Rotations are performed by pulling a handle vector (see figure 9c)
emanating from the center node and constrained to the tangent
plane. As the user moves the cursor, the patchino is updated so
that the center node remains fixed in screen space and the projec-
tion of the handle vector always points towards the cursor. The
input to the rotation operation is thus an angular offset in the tan-
gent plane to the center node.

Guessing a set of velocity vectors for a rotation is a little more
tricky than the similar problem for translations, as even a tiny
rotation angle could potentially result in large displacements at
nodes further from the center, thus causing numerical difficulties.
Our solution is to propagate the rotation velocity vectors using the
same maximum step size for every node in the grid. This yields a
faster angular velocity for nodes near the center of a patchino than
for nodes at its border, bounding the maximum step size at the ex-
pense of introducing a delay for nodes further away from the cen-
ter. In practice, this heuristic has performed well, and it provides a
sensible solution to the tradeoff between interactive feedback and
robustness. The details of the algorithm are outlined as Patchino
: Rotate on figure 7.

3.4.4 Warping

While scaling and shearing are standard features in traditional
painting systems, it appears that these operations may not be as
useful on curved surfaces. Instead, more general non-linear warp-
ing operations have proven to be convenient.

Patches are not restricted to remain the same shape while they
are being translated and rotated on the surface. The user can inter-
actively deform a patch by manipulating control points. This type
v

p
q

q'

Figure 6: Propagating rotations to the samples in a patch.
Given a rotation angle ! in the tangent plane, the neighbors
to p try to “rotate” around this point, while remaining con-
strained to the surface. For example, sample q moves to q0.
The samples are updated in the same order as shown on fig-
ure 4.
of warping is simple to implement given the framework described
for the above operations:all that needs to be done is to modify the
rest shape of the patch as it is being deformed, and the optimiza-
tion process described in section 3.3.1 will automatically make the
patch return to its new rest shape.

It is best to use a separate mesh of texture springs to store the
warped patch coordinates. The original mesh of geometry springs
should remain relatively undistorted, as the translation and rota-
tion operations require this mesh to be as regular as possible to
assure maximum robustness. Therefore, the warped coordinate
system is specified independently of the geometry coordinates
(see figure 8) with the exception that geometry nodes at patchino
boundariescan be repositioned freely (texture and geometry nodes
coincide at the boundaries). At any time, the user can map the
warped texture into the texture space of the patch using the Sur-
face : GetTextureCoordinates operation.

In our current implementation, the interface lets the user click
on a number of feature points inside the patch and move these
freely. The key points can be constrained to remain at fixed po-
sitions in the patch, allowing detailed feature alignment between
texture and geometry (see figure 10). These basic operations could
be extended to a more sophisticated library of warping tools, al-
lowing points, curves and regions inside a patch to be dragged and
constrained.

In our experience, surface warping is a natural and useful ex-
tension of the translation and rotation operations, and it forms the
last element in our interactive texturing framework.

4 Higher level operations
Just as there are 2d image processing methods that have no mean-
ing on curved surfaces, there are interactive texturing algorithms
unique to surfaces. An interesting aspect of the architecture de-
scribed in the previous sections is that it has served as inspira-
tion for a number of new texturing operations that have no natural
counterparts in traditional 2d painting systems.

4.1 Cylindrical patchinos
As many interesting shapes have parts that are relatively cylindri-
cal, a cylindrical patchino feature has been implemented. Cylin-
drical patchinos are defined by three boundary curves: two cyclic
geodesic curvature minimizing interpolants and one geodesic ar-
ranged in the shape of an oldfashioned pair of eye-glasses (see fig-
ures 9d and 11) and parameterized using a straightforward exten-
sion of the techniques described in [8] and [11]. The optimization



Class Sample
Vector3 x; n; v ; Position, normal and velocity
Vector3 �u,�v ; Derivatives
Sample neighbors[8] ; Spring coordinates
Vector2 k[8]

Class Patchino
private:

DifferentiableSurface surface ; Pointer to surface
Sample grid[DIM U][DIM V] ; Grid of samples

public:
Freeze() ; Set � = �
Translate(Vector3 v) ; Slide in direction v
Rotate(Real !) ;Rotate by angle ! around center
ReduceDistortion() ; Minimize E�(U )

Patchino : Freeze()
for pi 2 grid

for qij 2 pi:neighbors
hh (pi:k[j]:u; pi:k[j]:v) = coordinates of
qij:x� pi:x projected to tangent plane at qij:x
as a linear combination as qij:�u and qij:�u ii

Patchino : ReduceDistortion()
new p:x:x = new p:x:y = new p:x:z = 0
for p 2 grid in spiral order

for q 2 p:neighbors
new p:x = new p:x+ q:x+
q:k[j]:u�q:�u + q:k[j]:v�q:�v

; Here, q:neighbors[j] = p
for p 2 grid
p:x = new p:x=#p:neighbors

hh Recompute n, �:u and �:v at each sample ii

Patchino : Translate(Vector3 v)
center = grid[DIM U/2][DIM V/2]
surface.Slide(center,v)
center:v = hh center:x� center:xold

projected to tangent plane at center:x ii
for p 2 grid/fcenterg in spiral order ; See figure 4
q = p:neighbors[\interior00] ; See section 3.4.2
surface.Slide(p; q:v)
p:v = hh p:x� p:xold projected

to tangent plane at p:x ii
hh Recompute n, �:u and �:v at each sample ii

Patchino : Rotate(Real !)
center =grid[DIM U/2][DIM V/2]
hh Rotate center:�u and center:�v

by ! in tangent plane at center:x ii
for p 2 grid/fcenterg in spiral order
q = p:neighbors[\interior00] ; See text
v = hh p:x rotated by ! around q:x in

tangent plane at q:x ii - p:x
surface.Slide(p,v)
hh Estimate p:�u and p:�v based on p:x and q:x ii

hh Recompute n, �:u and �:v at each sample ii

Figure 7: Implementation of patchinos.
Figure 8: Texture warping. The regular grid illustrates the
geometric coordinates of the patch, which should remain as
undistorted as possible at all times. The curved lines shows
the separate texture coordinate grid for the patch.

procedure from rectangular patchinos generalizes almost directly,
except that the order in which the nodes are visited is specified by
circular curves, emanating from middle of the cylinder and pro-
ceeding up and down, rather than a spiral.

Experiments have shown that compositing using cylindrical
patchinos is a highly useful addition to the lower level opera-
tions from section 3. Moreover, the general idea of working with
patches of different topologies present an interesting new set of
sub-problems, such as how to apply transformations between rect-
angular and cylindrical patches interactively and how to deal with
rotations. Potential applications of spherical and Mobius strip
patchinos are left as a thought experiment for the interested reader.

4.2 Multi-layered compositing
In our system, any number of texture patches can exist on the sur-
face at any time, and the user is free to translate, rotate, scale and
deform these by clicking on them. Motivated by the image com-
positing paradigm, the patches reside in different layers and can be
lowered or raised similar to the way windows can be manipulated
on graphically oriented operating systems.

At any time, textures can be copy and pasted between any patch
and the surface. Aside from the special case of mappings be-
tween a texture patch and the surface as described in section 3.1,
textures can also be mapped between arbitrary combinations of
patchinos and the surface (see figure 9e). This facilitates general
image processing operations between sets of patches equivalent
to [3] and thus the entire digital compositing paradigm to be ap-
plied on curved surfaces. Current texture mapping hardware sup-
ports alpha blending and allows the various textures to be rendered
at interactive rates, making the approach practical on widely used
high-end graphics workstations.

5 Future work
We will conclude with a few ideas for other new and potentially
useful texturing operations.

Geometric patterns. A look at almost any intriguing 3d sur-
face will reveal a correlation between geometry and textures.
Tools allowing artists to take advantage of symmetries and con-
strain the position and extent of patchinos relative to each other
would probably be very useful.

Swiss cheese patchinos. Some surfaces have regions that are
relatively flat except for a hole or a branch extending outwards. In
such cases, it would be convenient to operate with patchinos that
would ignore the highly irregular regions. This might be accom-



plished by drawing feature curves around the base of a branch and
constraining a surrounding patchino not to move within these.

Copy and paste of surface geometry. Recent progress in
3d data acquisition and surface fitting techniques ([17] and [11],
[12]), present an interesting challenge in how to texture models
of a hitherto unseen level of complexity. This problem might be
alleviated by a new range of interactive applications between tra-
ditional modeling and painting systems. Operations supported
by such systems could include features for dragging free-form-
deformation lattices constrained to a surface while minimizing
volumetric distortion subject to appropriate constraints, and copy
and paste of actual geometric features extending from the surface.

6 Limitations

The underlying assumption of this work is that the base surface has
to be “smooth”. If the user tries to drag a patchino over a sharp
spike or across any region containing frequencies that are high
compared to the sampling density of the spring mesh, the patchino
mesh may start to fold onto itself. In this case, the user currently
looses the rest shape and has to reparameterize the interior of the
patchino. Although improved robustness would obviously be de-
sirable, the prototype implementation of these ideas is capable of
dealing with a sufficiently general range of surfaces to make the
approach feasible (see figures 9f, 12 and 13). In a nutshell, the
more irregular the surface, the less favorable texture compositing
is going to be compared to brush painting, and just like copy and
paste has not replaced hand painting in 2d systems, the same is
unlikely to happen for 3d surfaces. However, severe distortion is
unavoidable on highly irregular surfaces, and as severely distorted
texture mappings rarely look attractive, it is questionable whether
this capability would even be desirable. Instead, it appears that
texture compositing of relatively smooth surfaces could be a much
more feasible endeavor.

7 Conclusion

Considering the demand for interactive texturing algorithms for 3d
painting applications, there is a need for a more cohesive method-
ology for texturing of 3d surfaces. This work has proposed a ker-
nel of powerful and general operations in the hope that this will
serve as a starting point for a process that could eventually lead to
more friendly 3d painting applications. Furthermore, a stronger
underlying framework for texturing of general surfaces could po-
tentially help point towards new interesting directions of research
and thus accelerate the development of exciting new interactive
tools.

8 Acknowledgments

Thanks to Pat Hanrahan for a fun year in California, to Venkat Kr-
ishnamurthy for many helpful and enjoyable discussions and for
allowing me to use his excellent parameterization package [11],
to Julie Dorsey for lots of inspiration and cool ideas, to Tamara
Munzner for kindly helping with an important video tape in the last
minutes before a challenging deadline, to Brian Curless for allow-
ing me to use his friendly 3d scanning software [17], and to all of
the reviewers for their much appreciated advise. Finally, I would
like to thank everyone in the Stanford graphics group who helped
make my visit as pleasant as it was, i særdeleshed et stort tak til
Bill Lorensen for being the best sort-of-Danish officemate I have
ever had.
References
[1] E. Catmull. A hidden-surface algorithm with anti-aliasing. In Computer

Graphics (SIGGRAPH ’78 Proceedings), volume 12, pages 6–11, August
1978.

[2] Richard Shoup. SuperPaint. Xerox PARC, 1974.
[3] Thomas Porter and Tom Duff. Compositing digital images. In Hank Chris-

tiansen, editor, ComputerGraphics (SIGGRAPH’84 Proceedings), volume18,
pages 253–259, July 1984.

[4] 1990 computergraphicsachievementaward. Computer Graphics (SIGGRAPH
’90 Proceedings), 24:17–18, August 1990.

[5] Pat Hanrahan and Paul E. Haeberli. Direct WYSIWYG painting and texturing
on 3D shapes. In Forest Baskett, editor, Computer Graphics (SIGGRAPH ’90
Proceedings), volume 24, pages 215–223, August 1990.

[6] Maneesh Agrawala, Andrew C. Beers, and Marc Levoy. 3d paintingon scanned
surfaces. In Proceedings 1995 Symposium on Interactive 3D Graphics (Mon-
terey, California, April 9–12, 1995), pages 145–152.

[7] Jérôme Maillot, Hussein Yahia, and Anne Verroust. Interactive texture map-
ping. In James T. Kajiya, editor, Computer Graphics (SIGGRAPH ’93 Pro-
ceedings), volume 27, pages 27–34, August 1993.

[8] Hans K. Pedersen. Decorating implicit surfaces. In Robert Cook, editor,
Proceedings of SIGGRAPH ’95 (Los Angeles, California, August 6–11, 1995),
Computer Graphics Proceedings, Annual Conference Series, pages 291–300.
ACM SIGGRAPH, ACM Press, August 1995.

[9] Kurt Fleisher, David H. Laidlaw, Bena L. Currin, and Alan H. Barr. Cellular
texture generation. In Robert Cook, editor, Proceedings of SIGGRAPH ’95
(Los Angeles, California, August 6–11, 1995), Computer Graphics Proceed-
ings, Annual Conference Series, pages 239–248. ACM SIGGRAPH, ACM
Press, August 1995.

[10] Julie Daily and Kenneth Kiss. 3d painting: Paradigms for painting in a new
dimension, chi ’95conferenceproceedings(denvercolorado, may 7–11,1995).

[11] Venkat Krishnamurthy and Marc Levoy. Fitting smooth surfaces to dense
polygonal meshes for computer animation. In Proceedings of SIGGRAPH ’96
(New Orleans, Louisiana, August 4–9, 1996), august 1996.

[12] Matthias Eck and Hugues Hoppe. Automatic reconstruction of b-spline sur-
faces of arbitrary topological type. In Proceedings of SIGGRAPH ’96 (New
Orleans, Louisiana, August 4–9, 1996), august 1996.

[13] Andrew P. Witkin and Paul S. Heckbert. Using particles to sample and control
implicit surfaces. In Andrew Glassner, editor, Proceedings of SIGGRAPH ’94
(Orlando, Florida, July 24–29, 1994), Computer Graphics Proceedings, An-
nual Conference Series, pages 269–278. ACM SIGGRAPH, ACM Press, July
1994. ISBN 0-89791-667-0.

[14] R. Dietz, J. Hoschek, and B. Jüttler. An algebraic approach to curves and sur-
faces on the sphere and on other quadrics. Computer Aided Geometric Design,
10(3):211–230, August 1993.

[15] Chakib Bennis, Jean-Marc Vézien, Gérard Iglésias, and André Gagalowicz.
Piecewise surface flattening for non-distorted texture mapping. In Thomas W.
Sederberg, editor, Computer Graphics (SIGGRAPH ’91 Proceedings), vol-
ume 25, pages 237–246, July 1991.

[16] Matthias Eck et al. Multiresolution analysis of arbitrary meshes. In Robert
Cook, editor, Proceedings of SIGGRAPH ’95 (Los Angeles, California, Au-
gust 6–11, 1995), Computer Graphics Proceedings, Annual Conference Series,
pages 173–182. ACM SIGGRAPH, ACM Press, August 1995.

[17] Brian Curless and Marc Levoy. A volumetric method for building complex
models from range images. In Proceedings of SIGGRAPH ’96 (New Orleans,
Louisiana, August 4–9, 1996), august 1996.



Figure 9: Patchinos on an implicit surface. a) Pasted tex-
ture. b) Copied texture. c) Interactive handle for rota-
tions. d) Cylindrical patchino. e) Layered operations: tex-
ture mapped from one patchino to another. f) This and the
other patchinos were dragged from the back of the dog in
less than 10 seconds. g) Warped texture.

Figure 10: Copy and paste with cylindrical patchinos.

Figure 11: Warping for feature alignment. The same
patchino has been pasted onto the surface at four different
locations.
Figure 12: Patchinos on cubic spline patches.

Figure 13: Copy and paste on an implicit insect.


